Vote-boosting ensembles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vote-boosting ensembles

Abstract—Vote-boosting is a sequential ensemble learning method in which individual classifiers are built on different weighted versions of the training data. To build a new classifier, the weight of each training instance is determined as a function of the disagreement rate of the current ensemble predictions for that particular instance. Experiments using the symmetric beta distribution as th...

متن کامل

Decision Fusion on Boosting Ensembles

Training an ensemble of neural networks is an interesting way to build a Multi-net System. One of the key factors to design an ensemble is how to combine the networks to give a single output. Although there are some important methods to build ensembles, Boosting is one of the most important ones. Most of methods based on Boosting use an specific combiner (Boosting Combiner). Although the Boosti...

متن کامل

Boosting Unsupervised Competitive Learning Ensembles

Topology preserving mappings are great tools for data visualization and inspection in large datasets. This research presents a combination of several topology preserving mapping models with some basic classifier ensemble and boosting techniques in order to increase the stability conditions and, as an extension, the classification capabilities of the former. A study and comparison of the perform...

متن کامل

Boosting Ensembles of Structured Prediction Rules

We present a boosting algorithm for structured prediction with theoretical guarantees for learning accurate ensembles of several structured prediction rules for which no prior knowledge is assumed.

متن کامل

Boosting Expert Ensembles for Rapid Concept Recall

Many learning tasks in adversarial domains tend to be highly dependent on the opponent. Predefined strategies optimized for play against a specific opponent are not likely to succeed when employed against another opponent. Learning a strategy for each new opponent from scratch, though, is inefficient as one is likely to encounter the same or similar opponents again. We call this particular vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2018

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2018.05.022